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ABSTRACT 

In this paper we introduce a new class of operators called the n - power quasi - isometry and study their properties 

related to quasinormality and partial isometry. We also introduce another related new class of operators and investigate 

their spectral properties.  
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1. INTRODUCTION 

Let T be a bounded linear operator on a complex Hilbert space H. T is said to be 

(i) Normal if 
** TT = TT   

(ii) N-Normal if 
*nn* TT = TT [2] 

(iii) Quasinormal if 
T)T(T = T)T(T **

 

(iv) Quasi - Isometry if TT =TT *2*2
 

(v) N-Power Quasinormal if  *nn* TT = TT [6]. 

The class of normal, n-normal, quasinormal and n-power quasinormal operators are denoted by [N], [nN], [QN] 

and [nQN] respectively. The class of quasi-isometries which is a simple extension of isometries was introduced by[4].          

The quasi-isometry operators retain some properties of isometries[5]. We introduce a new class of operators T namely      

n-power quasi-isometry denoted by [nQI] satisfying 
1-n*2*21-n TTT =TTT , .n  Obviously this is based on the class 

of quasi-isometries denoted by [QI][4]. It is evident that when n = 1, [1QI] = [QI]. Interestingly we observe that, for           

n = 1, 2, 3,... the corresponding classes [nQI] are independent which is evident from the following examples. 

Example 1.1: For the operator 









00

10
T , a simple calculation shows that [2QI]. Tbut  [QI] T   

Example 1.2: The operator 









01

01
T , is [QI] but not [2QI]. 

Example 1.3: When 
2 =  , the unilateral shift given by the matrix operator 























............

...010

...001

...000

T
, satisfies 

T)T(T = )TT(T *2*2
but not 

2*2*22 T)T(T = )T(TT . That is, [2QI]  T  and [3QI]  T .  
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Let )( denote the Banach algebra of all bounded linear operators on a complex Hilbert space  and let 

(T)  (T), a  and )(Tp denote the spectrum, the approximate point spectrum and the point spectrum of   

respectively. 

2. PROPERTIES OF CLASS [nQI] 

Definition 2.1: An operator   is said to be unitarily equivalent to an operator S if 
* UTU=S for an unitary operator U . 

Theorem 2.2: The following assertions hold: 

(1) If [2QI]  [QI] T   then 2n[nQI],  T  . 

(2) If [3QI]  [2QI] T   then 4n[nQI],  T  . 

(3) If [nQI]  T  then every operator unitarily equivalent to  is also [nQI]. 

(4) [nQI]  [QI] T   then 2n],1)Q-[(n  T  . 

Proof: (1) Since  [2QI],  [QI]  T  we have, 

TT = TT *2*2
             (2.1) 

TT.T = TTT *2*2

            (2.2) 

Combining (2.1) and (2.2), we obtain, 

TTT  =TTT 2*22*2
            (2.3) 

By (2.1) and (2.3), 
1-n2*21-n* )TT(T=T)T(T  

2-n2*2 T)TT(T = 2-n2*2 )TT(TT= . 

Again applying (2.3) in =T)T(T 1-n* 3-n2*2 T)TTT(T , we obtain =T)T(T 1-n* 3-n2*2 )TTT(TT . 

Repeating the procedure we arrive at 
2*21-n1-n* TTT=TTT . 

(2) Since 
2*2*22 TTT = TTT [3QI],  [2QI]  T  and TT.T = TTT *2*2

      (2.4) 

Combining these two equations we obtain, )TT(TT  =)TT(TT 2*22*2

      
(2.5) 

Using (2.4) and (2.5) we have 

3-n2*223-n2*23-n2*22-n2*22-n*1-n* TTTT)TTTT(T)TTTTT()TTTT(TT)T(T=TTT   . 

Using (2.5) repeatedly for a finite number of times we obtain 
2*21-n1-n* TTT=TTT . 

(3) Let S  be unitarily equivalent to [nQI]  T . Then 
* UTU=S , where U  is unitary. Since [nQI]  T , 

1-n*2*21-n TTT =TTT and 

n**n**2*21-n*2**2*1-n2*21-n SS)UTT(U)UTT(T U)U)(UTU)(UTUT (U=SSS  . 

(4) Since  [nQI],  [QI]  T  we have, 
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TT = TT *2*2
                          (2.6) 

.TTT = TTT 1-n*2*21-n

                         (2.7) 

 TTTTTT 2*21-n1-n*  by(2.7) 

TTTTTT *1-n1-n*   by(2.6). 

Hence ]1)Q-[(n  T  . 

It is natural to ask whether the product and sum of two [nQI] operators are [nQI] . In general they need not be. 

The following Theorem gives an affirmative answer under some conditions. 

Theorem 2.4 

(1) If T and S are of class [nQI] , such that T doubly commutes with S then [nQI] TS . 

(2) If T and S are of class [nQI] , such that 0=ST = ST = TS = ST **
 then [nQI] ST  . 

Proof: (1) Since T doubly commutes with S , STTS  and TS=TS **
. 

1-n*1-n*1-n*2*21-n2*21-n22*2*21-n1-n2*21-n (TS)(TS)TS)(TTTSSSTTTSSSSTTSST =(TS)(TS)(TS) 

since [nQI] ST,  .Thus [nQI] TS . 

(2) Since 0STST **  STTS , we have, 

2*21-n2*21-n22*2*21-n1-n2*21-n SSSTTT)S)(TS)(TS(T =S)(TS)(TS)(T    

1-n*1-n* SSSTTT  since [nQI] ST,  . 
1-n*2*21-n S)S)(T(TS)T(S)(TS)(TS)(T   

Thus [nQI] ST  . 

3. CONDITIONS IMPLYING QUASINORMALITY 

The class of normal operators and quasinormal operators are independent of class [nQI] . In this section we 

prove that under some algebraic conditions 
1-n2 Tor   T T, are quasinormal. 

Theorem 3.1 

(1) Let [3QI]  [QI] T  then
2T is quasinormal. 

(2) If [3QI]  [2QI] T  and  ) ker(T)ker(T *  then is T quasinormal and in particular if 0)ker(T * 

then T is normal where ker is the nullspace of T . 

Proof: (1) Since TT = TT[3QI],  [QI]  T *2*2 and 
2*2*22 TTT = TTT Hence

22*22*2*22 TTTTTT = TTT 

Hence 
2T  is quasinormal. 

(2) By hypothesis, TTT = TTT *2*2
          (3.1)  
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and
2*2*22 TTT = TTT             (3.2) 

2*2*2 T)T(T = )TT(TT 2** T)T(T = TT)T(T 
 
by (3.1). 0T T)T-(TT 2** 

 
or

0 T)T-(TTT ***2  . Since  ) ker(T)ker(T *  , 0 T)T-(TTTT ***  and 
*

2
* kerker  implies 

0 T)T-(TTT *** 
            

(3.3) 

0 T)TT-(TT **  . Hence T  is quasinormal . If 0)ker(T *   then from (3.3) we obtain T is normal. 

Theorem 3.2: If T and I-T are in [3QI]  [2QI]  , then T  is quasinormal. 

Proof: Since  [2QI] T and  [2QI] -T  , 

TTT = TTT *2*2
            (3.4) 

I)-I)(T-(TI)-(T = I)-(TI)-I)(T-T ( *2*2

         
(3.5) 

To prove that T is quasinormal, by part 2 of Theorem 3.1, it is enough to prove the kernel condition 

 ) ker(T)ker(T *    Since [3QI]I)-(T  ,
2*2*22 I)-I)(T-(TI)-(T = I)-(TI)-(TI)-T (  

2*2* I)-I)(T-(TI)-(T = I)-(TI)-I)(T-T (  by (3.5). 

On simplifying we obtain, 022 *3*2***2*  . 

0)( )TTT(22 *22*2*2**2*   by (3.4) 

or 0 TT22 **22***2*2****2*  . 

Let )ker(T *x , then 0*  x . From the above equation, 00*  xx . Therefore 

 ) ker(T)ker(T *  and hence T is quasinormal. 

Theorem 3.3: If [nQI]  [QI] T  then
1-nT is quasinormal. 

Proof: By hypotheses given in the theorem, we have 

TT = TT *2*2
             (3.6) 

1-n*2*21-n TT = TT              (3.7) 

We need to prove 
1-n1-n1-*n1-n1-*n1-n )TT()(   

2-n2-*n1-n3-n2*23-*n1-n1-n1-*n1-n )()(   by (3.6). 

Repeated application of (3.6) gives, 
1-n*2*21-n1-n1-*n1-n TT)(   by (3.7) 

                    =
1-n2*2TT   by (3.6) 
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                        =
1-n3*3TT   by (3.6) 

           =
1-n4*4TT  by (3.6) 

Repeating the process and using (3.6) we obtain the desired result. 

4. CONDITIONS IMPLYING PARTIAL ISOMETRY 

In this section we show that by imposing certain conditions on [nQI] operator it becomes partial isometry. 

Lemma 4.1: Let [nQI] T then 1)QI][(n T  if and only if 0 = T] ,T[T n*
where [A,B] = AB – BA. 

Proof: 
n*2*2n TT = TT 1)QI][(n T  T )(T = )TTT( n*2*21-n  T )(T = )TT(T n*1-n*   

T )(T = )T(T n*n*  0 = T] ,T[T n* . 

Theorem 4.2: Let [nQI]  1)QI][(n T  such that 
n  has dense range in , then  is normal partial isometry. 

Proof: By Lemma 4.1, T T= TT n*n*  or 0T)T-(TT n**  . Since 
n  has dense range in ,   is normal.    

Hence 
n*2*2nn2*2n2*  TTTT TT= T)T (  . Thus 0= T]TT)T ([ n*2*  on range of 

n  and we have

TT*
is a projection and hence  is a partial isometry by [2.2.1 Theorem 3[2]]. 

Corollary 4.3: If [nQI]  1)QI][(n T  such that 
n  has dense range in , then  is unitary. 

Proof: By Theorem 4.2, is normal and partial isometry and hence T = TTT*
. By the definition of 

1-n*2*21-n TT   or )T()( n*2*21-n  or 
n*2*2n TT  .      (4.1) 

Since
n*2*2nn* TT TT, 1)QI][(n T  by (4.1). That is 

n*n* TT TT  . Using 

*TT ,  

we obtain,
1-nn* T TT   or 0)-T(T n*  . Since range of

n  is dense in , TT*
and hence is  

unitary. 

Theorem 4.4: Let  UP= T be the polar decomposition of   and  [2QI] T such that  ) ker(Uker(U) * then  is 

partial isometry. 

Proof:  [2QI] T implies  TT*2*2
or UPPUPPUUP 22*2  . Taking adjoint 

2**22* PPUUUPPPU  . The kernel condition  ) ker(ker(U)  yields,
2**22* PUUUUPPUU   or 

2***22** PUUUUUPPUUU  or 
2**22* PUUUPPU   . Since

22* PUPU  we have, 

UPUUPPU 2*22*  ,or 0)U(PPU 22*   or 0)][PU(P)][PU(P 2*2  . 

Using the fact that, 00*  SSS for any operator S on  , we obtain 0)PU(P 2   . Again  

[nQI]
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 ) ker(ker(U)  yields 0)(PU 22  . By hypothesis,  ) ker(Uker(U) * and hence,  

0)U(PU 2*   or UUP *2  . That is 
2P is a projection and P is a partial isometry by [2.2.1 Theorem  

3[2]]. Hence  UP= T is a partial isometry. 

Remark 4.5: The above Theorem raises the following question: Is a 2 - power quasi - isometry  a partial isometry if 

  U)ker()ker(U *  . 

Theorem 4.6: Let be of class such that is a partial isometry then 
2  is an isometry.  

Proof:   is a partial isometry implies T = TTT*
           (4.2) 

Since  [nQI] T  
1-n*2*21-n TT  . 

1-n2*2n1-n*2*21-n T)TT()(  by (4.2). 

0)( 2*2n               (4.3) 

That is,  2*2
 on )(ker n . By (4.3) 0)( *n2*2   or  2*2

 on 
 )(ker n

. Thus

 on
 )(ker)(ker nn

implies
2 is isometry. 

Definition 4.7: The spectral radius of )( is defined as )}(|:sup{|)(  r . 

It is well known that for a quasinormal operator, )(r [2]. 

Theorem 4.8: If [2QI]  [QI] T  ,then 1)( r where )(r is the spectral radius of  . 

Proof: Since  [2QI],  [QI]  T  by 4 of Theorem 2.1, is quasinormal and hence 1)( r . 

5. CLASS ][ nQ   OPERATORS 

A.Uchiyama and T.Yoshino [7] studied a class of opeators   satisfying  

*2** ))((  



c where 0 and C . 

Analogously, we define a new class ][ nQ   based on the n- power quasi isometry class [nQI]. We define a 

class ][ nQ  of operators  satisfying the following hypothesis. ][ nQ   if for some  and 0c ,

nnnn c )()( *21*22*1   



 for all C . Equivalently, for some  and 0c

xcx nnn )(21*22*1   



 for all x , C . Also let 
1

][][






nn QQ . We note that 

the class ][Q class [nQI] n . 

[nQI]

 2*2

1

1
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Lemma 5.1: For each  , such that  1 , we have ][][ nn QQ   . 

Proof: 21*22*11*22*121*22*11*22*1










  nnnnnnnn
 


1*22*11*22*1 


  nnnn   nnnn c )()( *213 


 



=

nnc )()( *2   , where   2132





 cc nn


  . Therefore ][][ nn QQ   . 

Proposition 5.2 [Berberian Technique [1]] 

Let  be a complex Hilbert space. Then there exists a Hilbert space  and an isometric 

*
 homomorphism preserving the order 0:)()(:  satisfying: 

(1)
** )()( 
 

(2) )()()( SS    

(3)   )(   (4) )()()( SS   

(5)  )(
 

(6) )()( S  if S  

(7) ))(())(()(),())((  paa   

(8) If  is a positive operator, then 0)()(  


. 

Lemma 5.3: If ][  nQclass , then ][)(  nQclass . 

Lemma 5.4: If ][ nQ  then ][)( nQ . 

Proof: Since ][ nQ ,
nnnn c )()( *21*22*1   



 for all C , 1  and 0c . 

From the properties of   it follows that, ))()(( *21*22*1 nnnn c 




   


 for all 

C . By condition 8 of Proposition 5.2, we get,   
1*22*11*22*1  





  nnnn for 

all 0 . Therefore ))()(()()()()()()( *21*22*1 nnnn c   



for all 

C . Therefore ][)( nQ  

Theorem 5.5: Let ][ 1 Q , 

(1) If )( p , such that 1  then )( * p ,furthermore if    then  (the proper subspace 

associated with  ) is orthogonal to  . 

(2) If )( a then )( * a . 

(3)  *22*
 is not invertible. 



8                                                                                                                                                                               J. Stella Irene Mary & P. Vijayalakshmi 

Proof: (1) ][ 1 Q , then ][ 1

 Q ,for some , and therefore there exists a positive constant c such that,

)()( *2*2*2

 



c for C . As xx   implies 02*2*2

 x



and  

0)( *2*2

 x . 00 *2**2*2  xxxx  . By hypothesis 1 and hence 

0)( **  x . To establish )( * p we need to show that 0*  x . Suppose 0*  x , then 

xxxxxx ,,,0 *  . Since 0x , we obtain 0 which contradicts, 1 and hence the desired 

result. Moreover if   , then yxyxyxyxyxyx ,,,,,, *    

Therefore 0, yx .
 

(2) Let )( a  then from condition 7 of Proposition 5.2, we have ))(())(()(  paa  .  

Therefore ))((  p .By Lemma 5.4 and condition 1 of proposition 5.2, we obtain,  

))(())(( **  pp  . 

(3) ][ 1 Q , then there exists an integer 1p and 0pc  such that,  

22
12

*2* )(
2

xcx p

p




 for all Cx  , . 

It is known that  )(a  . If )( a , then there exists a normed sequence )( mx in such that  

0)(  mx  as m . Then 0)( *2*2

 mx  as m . Therefore  *22*
 is not 

invertible. 
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